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Abstract

A scattering formalism is developed in a multiple scattering model to describe inclusive

momentum distributions for high-energy projectiles. The e�ects of �nal state interactions on

response functions and momentum distributions are investigated. Calculations for high-energy

protons that include shell model response functions are compared with experiments.

Introduction

A realistic description of galactic cosmic ray transport through bulk shielding requires an

extensive data base of nuclear interaction cross sections. (See ref. 1.) Traditionally, velocity-

conserving interactions have been assumed for all ions with a mass number greater than one for

easier numerical computations. (See ref. 1.) As transport algorithms become more accurate, this

assumption will likely be removed; the result will be an increased need for nuclear data bases

that include secondary particle spectra.

Previously (refs. 2 and 3), we developed a multiple scattering series to describe the energy

loss spectra of fast ions in nuclear collisions. This multiple scattering series, which describes the

quasi-elastic peak, was e�ectively summed by expressing the many-body response functions of the

target as a convolution of the one-body response function through an energy shift approximation.

For composite projectiles, incoherent corrections were shown to slightly reduce the cross section

(refs. 2 and 3), when uncorrelated form factors were assumed. Multiple scattering e�ects

were also shown to shift the position of the quasi-elastic peak considerably, which agrees with

experiments. In references 2 and 3, a two-dimensional representation of the target response

function was used in the eikonal formalism. In this paper we treat the longitudinal aspects of

the response; however, we used the eikonal approximation to evaluate the cross section. In this

paper we also focus on the �nal state interaction (FSI) between knocked-out target nucleons and

the target recoil. A treatment of the FSI in inclusive scattering is important for understanding

scaling phenomena (refs. 4{6) and transparency (refs. 7{9) in high-energy collisions as well as in

the intranuclear cascade.

In inclusive scattering with fast ions, the projectile has left the scattering region before

the FSI; thus, a simpli�ed treatment of ion e�ects on the projectile wave function may be

valid. Focusing on energy losses above low-lying collective states and below pion production

thresholds, we consider ejectiles of the target using the approach of Horikawa et al. (ref. 10)

for decomposition of the response function into elastic and inelastic FSI's. We then evaluate

these terms by using the eikonal approximation to the Moller operator. Pauli exclusion e�ects

are neglected in this preliminary treatment of the FSI. A rough estimate of exclusion e�ects is

made from a medium, modi�ed, two-body cross section. Proton projectiles are then compared

with experiments based on the shell model in a harmonic oscillator basis. Included are the s; p;

and d shells that allow calculations for targets up to
40
Ca.

Multiple Inelastic Collision Series

In the eikonal coupled channels (ECC) model (refs. 11{13), the matrix of scattering ampli-

tudes for all possible projectile-target transitions is given by

f(q) =
ik

2�
bZ Z

d2b eiq�b
n
ei
�(b)

� 1

o
(1)

where barred quantities represent matrices, b is the impact parameter vector, q is the momentum

transfer vector, and k is the projectile-target relative wave number. In equation (1), bZ is an

ordering operator for the z-coordinate that is necessary only when noncommuting two-body



interactions are considered. The eikonal phase elements are de�ned by matrix elements of
arbitrary projectile-target states of the following operator:

b�(b) = 1

(2�)2kNN

X
�;j

Z 1

�1
dz

Z
d3q eiq�� e�iq�r� e

iq�rjfNN(q) (2)

where � and j label the projectile and target constituents, respectively; r is the internal nuclear

coordinate; � is the projectile-target separation with � = (b ; z); fNN is the nucleon-nucleon

(NN) amplitude; and kNN is the NN relative wave number.

When treating inelastic scattering, we assume that the o�-diagonal terms in � (denoted by
�o) are small compared with the diagonal ones, �

D
; then we expand f in powers of �o to

f(q) =
ik

2�

Z
d2b eiq�bei

�
D(b)

X
m=1

(�
i�o(b)

�m
m!

)
(3)

We also will make the assumption that all the diagonal terms are represented by the ground-

state elastic phase �. Using equation (3), we sum over target �nal states X (continuum) to �nd

the inclusive angular distribution for the projectile when its mass remains unchanged as in

d�

d


�
IN

=
k2

(2�)2

Z
d2b d2b0 eiq�(b�b

0) e
i
�
�(b)��y

(b0)

�
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X
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1

(m!)2
< 0P 0T j

�
ib�(b)�m j0PX >< X0P j

h
�ib�y(b0)im j0P0T > (4)

Equation (4) only allows for a study of the momentum transfer spectra of the projectile. However,

in any consideration of the projectile energy loss, energy conservation must be treated. Based

on continuum states for the target �nal state, energy conservation leads to

d2�

d
 dEP 0

�
IN

=
k2

(2�)2

Z
d2b d2b0 eiq�(b�b

0
) e

i
�
�(b)��y

(b0
)

� ATX
m=1

Wm(b;b
0; !) (5)

and

d�

dEP 0

�
IN

=

Z
d2b e�2 Im �(b)

ATX
m=1

Wm(b;b; !) (6)

where EP 0 is the energy of the projectile in the �nal state, ! is the projectile energy loss, and

we de�ne

Wm(b;b
0; !) =

1

(m!)2

Z mY
j=1

"
dkj

(2�)3

#
�(Ef �Ei) < 0P0T j

�b�(b)�m j0Pkj >

� < kj0P j
hb�y(b0)im j0P0T > (7)

where kj is the wave number vector of a knocked-out target nucleon.
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The inelastic collision series of equation (5) is expected to converge fairly rapidly. In the next
section we consider the evaluation of this series for an uncorrelated target wave function.

Collision Terms in Plane Wave Approximation

We �rst consider the evaluation of the collision terms Wm using plane waves for the �nal
continuum states of the target. The pro jectile motion is treated in the coherent approximation.
(See ref. 1.) We consider a three-dimensional representation of the collision terms rather than
just the transverse terms considered in references 2 and 3. The e�ects of correlations are not
treated herein.

The �rst collision term is written

W1

�
b;b0; !

�
=

A2

P
AT

(2�)4k2
NN

Z 1

�1
dz

Z 1

�1
dz0

Z
dq dq0 eiq�� e�iq

0��0

� F (q)F (q0)fNN(q)f
y
NN

(q0)

Z
d3k

(2�)3
�(! � Ek)G0Tk

(q) G
y
k0T

(q0) (8)

where G0Tk
is the transition form factor of the target and AP and AT are the projectile and

target mass numbers, respectively. It is helpful to change variables as

� =
1

2
(q+ q0) (9)

� = q� q0 (10)

x = r� r0 (11)

y =
1

2
(r+ r0) (12)

Also,

R = � � �0 (13)

S =
1

2
(� + �0) (14)

with the transverse parts denoted R? and S?, respectively. The �rst collision term is rewritten
using equations (9){(14) as

W1 (R?;S?; !) =
A2

P
AT

(2�)4k2
NN

Z
dz dz0 d3� d3� ei��R ei��S

�A

�
� +

�

2

�
Ay

�
� �

�

2

�
R1(�;�; !) (15)

where we have de�ned

A(q) = F (q)fNN(q) (16)

and

R1(�;�; !) =

Z
d3k

(2�)3
�(! � Ek)G0k

�
� +

�

2

�
G
y
k0

�
� �

�

2

�
(17)
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Introducing the Fourier transform pair

R1(�;�; !) =

Z
dt

(2�)
ei!teR1(�;�; t) (18)

and

eR1(�;�; t) =

Z
d! e�i!tR1(�;�; !) (19)

allows us to evaluate the energy-conserving delta function in equation (17). (See ref. 14.) For
the target nucleons, we assume that

Ek =
k2

2mN
+ �B1

(20)

where mN is the nucleon mass, �B1
is the binding energy, and equation (19) is

eR1(�;�; t) =

Z
dk

(2�)3
dx dy e

�i�B1
t
e�ik

2t=2mN eik�x

� ei��x ei��y �
�
y +

x

2
;y�

x

2

�
(21)

where the density matrix is �(r; r0) and is de�ned by

�(r; r0) = �(r) �y(r0) (22)

and � is the ground-state single-particle wave function. We then �nd

R1(�;�; �) =
mN�1

(2�)2

Z
d3x d3y ei��x ei��y jo(�1x)�

�
y+

x

2
;y�

x

2

�
�
�
! � �B1

�
(23)

where jo is a spherical Bessel function, � is the unit step function, and

�1 =
q
2mN

�
! � �B1

�
(24)

The higher order terms are more di�cult to treat because of the enumeration of projectile
and target intermediate states. A �rst approximation is to assume that the projectile remains
in the ground state throughout the collision (coherent projectile approximation).

Using similar coordinate changes as described above, we �nd the mth-order collision term as

Wm(R?;S?; !) =
A2m
P Am

T

(m!)2k2m
NN

(2�)(2m+2)

Z
dz dz0

Z mY
j=1

�
d3�j d

3�j

� ei�j�R ei�j �SAj

�
�j +

�j

2

�
A
y
j

�
�j �

�j

2

��

� Rm(�1; : : : ;�m;�1; : : : ;�m; !) (25)
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where

Rm(�1; : : : ;�m;�1; : : : ;�m;!) =
mN

2

�
1

2�

�3m=2 Z mY
j=1

�
d3xj d

3yj e
i�j�xj ei�j �yj

� �
�
yj +

xj

2
;yj �

xj

2

� � �
3m=2�1
m P

j

x2j

!3m=4�1=2

� J3m=2�1

2
4s2mN

�
! � �Bm

�X
j=1

x2j

3
5� �! � �Bm

�
(26)

where Rm = 0 for ! < �Bm. The solutions for the mth-order terms in equation (26) result from

the Fourier transform of the temporal response. Because we keep the longitudinal momentum
transfer in the response (as opposed to the approach of cylindrical geometry in references 2

and 3), the order of the Bessel function in Rm di�ers from references 2 and 3. For forward-

peaked wave functions, we approximate

Rm(�1; : : : ;�m;�1; : : : ;�m; !)�= Cm(! � �Bm)
m�1

mY
j=1

R1

�
�j ;�j;

�mp
m

�
+O

�
�4j x

4
j

�
(27)

such that

Wm(R?;S?; !) =
Cm(! � �Bm)

m�1

(m!)2

�
W1

�
R?;S?;

�mp
m

��m
(28)

where C1 = 1; C2 = �
4
; C3 = �

105
; and C4 = �2

240
. Equation (27) is found by considering the

Taylor series for J3m=2�1: The e�ective energy shift in equation (27) for them > 2 approximation

and the coe�cients Cm di�er from references 2 and 3 because of the longitudinal contributions

to Rm that are included here. We then have for the energy loss spectra (eq. (5)) in a coherent

projectile model,

d2�

d
 dEP 0

�
IN

=
k2

(2�)2

Z
d2R d2S eiq�R? ei[

�(R?+S?=2)�
�y(R?�S?=2)]

�

ATX
m=1

Cm(! � �Bm)
m�1

(m!)2

�
W1

�
R?;S?;

�mp
m

��m
(29)

and

d�

dEP 0
=

Z
d2S e�2 Im �(S?)

�

ATX
m=1

Cm(! � �Bm)
m�1

(m!)2

�
W1

�
0;S?;

�mp
m

��m
(30)
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The coherent approximation assumes that the projectile remains in the ground state through-
out the scattering. The leading-order correction to the coherent terms occurs in the collision
term W2 and corresponds to the following replacement of W2 from references 2 and 3:

A4
P
F

�
�1 +

�1

2

�
F

�
�1 �

�1

2

�
F

�
�2 +

�2

2

�
F

�
�2 �

�2

2

�

! A2
P

��
F (2�1) + (AP � 1) F

�
�1 +

�1

2

�
F

�
�1 �

�2

2

��

�

�
F (2�2) + (AP � 1) F

�
�2 +

�2

2

�
F

�
�2 �

�2

2

���
(31)

which follows from using closure on the projectile intermediate states. Physically, equation (31)
allows the projectile to dissociate in the intermediate state. Further modi�cations are necessary
when correlation e�ects are treated.

Final State Interactions

The target transition form factors will describe the e�ects of the FSI between the unobserved
ejected nucleons and the recoiling target nucleus. We now consider these e�ects using the
eikonal form of the optical model. Because the measurement is of the fast primary, we expect
the details of the FSI on the primary wave function to be small. Therefore, we will introduce
several approximations to obtain a tractable solution.

The transition form factor of the target appearing in the �rst-order response is given by

G0Tk1
(q) = < 0T j e

iq�r
j  

(�)
k1

> (32)

where  
(�)
k1

is the outgoing scattering state. With the Moller operator b
(�)
k1

, the transition form

factor is written using plane-wave states as (ref. 4)

G0Tk1
(q) = < 0T j e

iq�r b
(�)
k1

j k1 > (33)

The Moller operator is related to the Green function bg(�)o and to the transition operator bT as

b
(�)
k1

= 1+ bg(�)o
bT (34)

Using equations (33) and (34), we can separate the �rst-order response function into three terms
corresponding to the plane-wave response, elastic distortion in the FSI, and inelastic reaction in
the FSI (cascade). Thus,

R1(q;q
0; !) = RPW1 + RDW

1 + RIN
1 (35)

The plane-wave term was described above. For the DW term, we have

RDW
1 =

Z
d3k1

(2�)3
�
�
! � Ek1

� �
< 0R j eiq�r bg(�)o

bT jk1 > < k1 je
�iq0�r0

j0R >

+ < 0R j eiq�r j k1 > < k1 j bg(�)yo
bT y e�iq

0�r0

j0R >

�
(36)
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where j0R > is the ground-state wave function of the recoil nucleus. The cascade term describes
a new inelastic collision series of the ejected nucleon with k1 reacting on the target recoil given
by

RIN1 =

ATX
`=2

Z
d3k1

(2�)3

Ỳ
j=2

"
d3kj

(2�)3

#
�

 
! � Ek1

�
X̀
j=2

Ekj

!

� < 0R j eiq�r bg(�)o
bT j k1

Ỳ
j=2

kj >

� < k1

Ỳ
j=2

kj j bg(�)yo
bT y e�iq

0
�r0

j0R > (37)

We next consider the evaluation of formal equations (36) and (37) using the eikonal form of the
optical model.

In the optical model (refs. 5{7), the Moller operator is expressed by the matrix



(�)

k1
= ei

�
(�)

R (s;z) (38)

where s denotes the transverse component of r and the subscript R indicates the coupling phases
for the recoil system with matrix elements

�(�)
R

=
(AT � 1)

(2�)2kNN

Z
+1

z
dz

Z
dq eiq�r G0Tk1

(q)fNN(q) (39)

where the energy dependence of �
(�)

R
is determined by k1 rather than by the beam energy.

The diagonal part of 

(�)

k1
determines the PW and DW response terms that we combine as

REL1 (q;q0; !) = RPW1 (q;q0; !) +RDW1 (q;q0; !) (40)

If we neglect incoherent contributions to the elastic distortion, we have

REL
1

�
q;q0; !

�
=

Z
d3k1

(2�)3
�
�
! � Ek1

� Z
dr dr0 eiq�r e�iq

0

�r0

� e�ik1(r�r
0)�
�
r; r0

�
exp
n
i
h
�(�)
R

(s; z)� �(�)y
R

(s0; z0)
io

(41)

Expanding the phase of the distorted wave in equation (41) about r � r0 = 0 and keeping
only the �rst term were shown to provide accurate approximations for the distorted wave in
reference 15 and are used here. Thus,

REL1 (�;�; !) �=

Z
d3k

(2�)3
� (! �Ek)

Z
d3x d3y ei��x ei��y

� eik�x�
�
y+

x

2
;y�

x

2

�
e
�2 Im �(�)

R
(y)

�
�
! � �B1

�
(42)

The calculation of �
(�)

R
is described in the appendix.
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We make one further approximation by noting that the two-body parameters in �
(�)
R

change
smoothly with the energy loss and provide the only dependence on k1 for this phase. Thus, we
write

REL1 (q;q0; !) =
mN�1
(2�)2

Z
d3x d3y ei��x ei��y jo(�1x)�

�
! � �B1

�

� �
�
y+

x

2

��
y�

x

2

�
e
�2 Im �(�)

R
(y)

(43)

with the e�ective energy used for evaluating �
(�)
R

given by E = ! � �B1
. The Pauli exclusion

e�ects should be more important in �
(�)
R

than the P {T elastic coupling and will be approxi-
mated by the e�ective two-body cross section discussed below.

We next consider the inelastic part of the response function. As in equation (3), we expand



(�)
k1

into diagonal and o�-diagonal parts. The o�-diagonal terms correspond to inclusive

reactions between k1 and the target recoil. The �rst term corresponds to k1 ejecting a second
nucleon from the target where we are ignoring low-lying excited states. That term is given by

RIN1 (q;q0; !) =

Z
dk1

(2�)3
dk2

(2�)3
�
�
! �Ek1

� Ek2

� Z
dr dr0 eiq�r e�iq

0�r0

� eik1�(r�r
0) �(r; r0) e

i

h
�
R(s;z)��

y

R
(s0;z0)

i

� < 0R j b�R(s; z) j k2 > < k2 j b�yR(s0; z0) j0R > (44)

Using approximations similar to those made in equations (27), (42), and (43), we reduce
equation (44) to

RIN1 (�;�; !) =
h�
4

�
w � �B2

�i mN�2

(2�)2

Z
dx dy ei��x ei��y

� �
�
y+

x

2
;y�

x

2

�
jo(�2x)W

(�)
R

(x;y; �2) (45)

where we de�ne the collision term between recoil and nucleon knockouts as

W
(�)
R

(x;y; �2) =
(AT � 1)

(2�)4k
2
NN

Z 1

xz

dz

Z 1

yz

dz0
Z
d3�0 d3�0 ei�

0�x(z) ei�
0�y(z0)

� fNN(�
0 + �0=2)f

y
NN(�

0
� �0=2)RPW1 (�0;�0; �2) (46)

where x(z) = (x?; z) and y(z) = (y?; z
0). In equation (46) the plane-wave response function

appears evaluated at the value �2. Higher order terms in the intranuclear cascade could be added
to the response function in equation (45) in a similar manner.

8



Method of Calculation and Results

By using shell model wave functions in a harmonic oscillator basis, the density matrix for
AT � 40 is found as

�

�
y+

x

2
;y�

x

2

�
=

1�
�R

2
T

�3=2 e
�y2=R2

T e
�x2=4R2

T

(
as + 2ap

 
y
2

R
2
T

�
x
2

4R2
T

!

+ ad

"
3

2
�

2

R
2
T

�
y2 +

x2

4

�
+

2

R
4
T

�
y2 �

x2

4

�2#)
(47)

where the constant RT represents the target matter radii and as, ap, and ad are occupation
probabilities for s-, p-, and d-shell nucleons, respectively, given by (for AT � 40)

as =

" 4
AT

(AT > 4)

1 (AT � 4)
(48)

3ap =

2
6664

0 (AT � 4)

AT � 4
AT

(4 > AT � 16)

12
AT

(AT > 16)

(49)

6ad =

"
0 (AT � 16)

AT � 16
AT

(AT > 16)
(50)

In equations (47){(50) we treat the degenerate 1d and 2s shells approximately as a single shell,
denoted d shell, because spin e�ects are not considered. In table I, values for shell-model
occupation probabilities are given for several nuclei.

The plane-wave response function for the s shell is found by using equation (47) in
equation (23) as

Rs =
mNasRT

�
p
�

e
�R2

T
�2=4

e
�R2

T
(�2+�2) sinh

�
2R2

T��

�
(51)

Table I. Shell Model Parameters

Nucleus as ap ad
aRT, fm

4He 1.0 0 0 1.33
6Li .57 .143 0 2.11
9Be .444 .185 0 1.79
12C .333 .222 0 1.69
16O .25 .25 0 1.83
20Ne .20 .20 .033 2.14
27Al .148 .148 .068 1.91
40Ca .1 .1 .1 2.10

a
Values for RT from references 1 and 16.
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The plane-wave response function for the p-shell is found by

Rp =
mNapRT

�
p
�

("
2�

1

2
R2
T�

2
+ 2R2

T (�2 + �2)

#
sinh

�
2R2

T��

�

� 4R2
T �� cosh

�
2R2

T��
� )

e
�R2

T
�2=4

e
�R2

T
(�2+�2)

(52)

and the plane-wave response function for the d-shell is found by

Rd =
mNadRT

�
p
�

("
7

2
+ 2R2

T (�
2
+ �2) + 2R4

T (�2 + �2)2

+ 8R4
T �2�2

#
sinh

�
2R2

T��

�
�R2

T�
2

"
3

2
+R2

T (�
2
+ �2)

#
sinh

�
2R2

T��

�

+
1

8
R4
T�

4
sinh

�
2R2

T ��
�
�
h
4R2

T �� + 8R4
T ��(�2 + �2)

i
cosh

�
2R2

T��
�

+ 2R4
T�

2�� cosh

�
2R2

T ��

�)
e
�R2

T
�2=4

e
�R2

T
(�2+�2)

(53)

In an evaluation of the collision terms, the energy loss is taken as !i = ! � �Bi
, where �Bi

is

the separation energy corresponding to the orbit i. (See ref. 10.) Values for �Bi
for a few nuclei

are listed in table II as found in references 10 and 16. Analytic forms for RDW
and RIN

are not

possible, so numerical integration is used.

Table II. Binding Energies of Shell Model Orbits

Nucleus Orbit a�B1, MeV

4He s 20.5

6Li s 26.0

p 5.2

9Be s 27.2

p 18.2

12C s 38.7

p 17.5

16O s 39.0

p 18.0

27Al s 50.0

p 22.0

d 15.0

40Ca s 51.0

p 35.0

d 15.0
a
Values for �B1

from references 10 and 16.
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For AP � 4 we use F (q) = e
�R2

P
q2=4, where the constant RP represents the pro jectile matter

radii. The two-body amplitude is parameterized as

fNN =
�(�+ i)kNN

4�
e�Bq

2=2 (54)

where � is the two-body cross section, B is the slope parameter, and � is the ratio of real to

imaginary parts of the forward, two-body amplitude. Values for the two-body parameters are

listed in table III for calculated versus laboratory (lab) energies.

Table III. NN Amplitude Parameters

Tlab, MeV �pp; fm
2 �np; fm

2 Bpp; fm
2 Bnp; fm

2 �pp �np

558 3.85 3.58 0.12 0.12 0.40 �0.16

800 4.67 3.78 .16 .16 .18 �.33

In �gures 1{3 we show the diagonal part (� = 0) of the response function for 4He, 12C, and
27Al at several values of � versus the energy loss. Binding energies assumed for these nuclei are

listed in table II. The multiple shell structures for 12C and 27Al are seen at lower values of � in

�gures 2 and 3. In �gures 4{6 the o�-diagonal part (� 6= 0) is displayed for � = 1:5 fm�1. The

breaking of translational invariance in �nite nuclei leads to a nonzero response for the o�-diagonal

components. Figures 4{6 show that the o�-diagonal terms quickly dampen as we increase the

target mass number, and the results for nuclear matter should be accurate for nuclei heavier

than those considered here. Calculations that include ground-state correlations by Alberico et al.

(ref. 17) also suggest that damping saturates at about AT = 40. Figure 7 illustrates the comple x

structure of 27Al caused by the multiple shell structure and the o�-diagonal response.

The response terms with contributions for the FSI (eqs. (43) and (45)) contain the free two-

body amplitude evaluated at an e�ective energy E that was determined by the projectile energy

loss as E = w � �B1
. For the relatively low values of E, we should expect signi�cant deviations

from the impulse approximation. We follow the usual approach of replacing the free two-body

amplitude in equation (54) with an e�ective one that approximately treats some of the medium

modi�cations. Smith and Bozoian (ref. 18) provide the parameterization

�� =

2
64

2mN
PL

100 T2
L�

T2
L
+ 182

� (TL � 164 MeV)

2mN
PL

0:6 TL (TL > 164 MeV)

9>=
>;

(55)

where PL and TL are the nucleon kinetic momentum and energy, respectively, in the laboratory

that correspond here to E. The slope parameter is assumed as zero, which corresponds to the

isotropic scattering that is approximately true at low energies. Equation (55) is based on optical

potential studies. In reality, �� should contain a dependence on the target density and will di�er

for elastic or inelastic collision terms because the number of o�-the-mass shell particles is not

the same in these two cases.

Comparisons of the distorted-wave and inelastic response corrections with plane-wave re-

sponse calculations are shown in �gures 8{11 for 12C. The DW response (dashed line) is lower

than the PW response (solid line) at small values of �. The shapes of the response functions for

the diagonal terms show only a slight shift in the position of the quasi-elastic peak because of

11



the inelastic term. In contrast, the o�-diagonal contributions (�gs. 10 and 11) are substantially
modi�ed. Here, the distorted waves alter the interference patterns because of the multiple shell

structure. Calculations for heavier targets were not performed at this time because evaluations

of inelastic response function are extremely complex for the higher shells.

Calculations of momentum spectra are shown in �gures 12{15 at several angles along with

comparisons with experimental data (ref. 19) for inclusive proton scattering on 6Li, 12C, 27Al,

and 40Ca at a beam energy of 800 MeV. At the lowest momentum values, the e�ects of pion

production are seen but are not included in our calculations. The calculations in �gures 12{15

are made with the plane-wave response model and include contributions up to the fourth order.

The second- and higher-order terms are small; however, these terms become more important with

increasing target mass and momentum transfer. In �gures 16 and 17, a similar comparison is

made with the experimental data of reference 20 for protons at 558 MeV. Clearly, the dominant

contribution for nucleon-nucleus collisions is the �rst collision term, which suggests that an

improved description of the data will require going beyond the independent particle model used

here to include correlation e�ects. This dominance of the �rst collision term contrasts with our

previous results for composite projectiles (refs. 2 and 3) in which coherence e�ects are important

for multiple scattering terms.

In �gures 18 and 19, calculations are shown for 12C and 27Al that include the e�ects of �nal

state interactions in the �rst-order response functions for 800-MeV proton beams. The inelastic

collision term is seen to contribute to the distribution in a manner close to the plane-wave

double collision term; this contribution is expected because the terms have the same dependence

on energy loss and ground-state wave function. The combined e�ects of the distorted wave,

ejectile, and recoil reduce the peak of the cross section with a slight shift in position. The

inelastic collision term contributes primarily in the dip region between the quasi-elastic and
pion production peaks.

Concluding Remarks

A formalism for describing the energy loss spectrum of fast ions in nuclear collisions at high

energy was developed that includes the e�ects of �nal state interactions. Calculations in the

independent particle model with harmonic oscillator wave functions suggest that a signature of

the intranuclear cascade is seen in the dip region between the quasi-elastic and pion production

peaks. The e�ects of the nuclear medium and the Pauli blocking are expected to be important in

providing a more complete treatment of cascade e�ects than discussed in this paper. However,

the present results indicate that cascade e�ects can be treated in an approach that is similar to

the quantum mechanics used here.

NASA Langley Research Center

Hampton, VA 23681-0001

June 14, 1993
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Appendix

Calculation of �
(�)
R

The outgoing distorted phase for the elastic coupling of the ejected nucleon with the core is
written

�(�)
R (y) =

(AT � 1)

(2�)2k
2
NN

Z
1

yz

dz

Z
d3q eiq�y G(q)fNN(q) (A1)

The form factor is found from the one-body density matrix in equation (47) as

G(q) =
�
C1 + C2q

2 + C3q
4
�
e�R

2

T
q2=4 (A2)

where

C1 = as + 3ap + 6ad = 1 (A3)

C2 = �R
2
T

�
3

4
ap + 3ad

�
(A4)

C3 =
R4
T

8
ap (A5)

Using the two-body amplitude of equation (54), we have for the imaginary part of �
(�)
R

Im �(�)
R

(y) =
(AT � 1)�

(2�)2(4�)

Z
1

yz

dz

Z
d3q eiq�y

�
C1 + C2q

2 + C3q
4
�
e�wq2 (A6)

where

w =
R2
T

4
+
B

2
(A7)

Integration of equation (A5) leads to

Im �(�)
R

(y) =
(AT � 1)�

4w
p
�

e�y
2

?
=4w

"
A1�

�
1

2
; y2z=4w

�

+ 4wA2�

�
3

2
;
y2z
4w

�
+ 16w2A3�

�
5

2
;
y2z
4w

�#
(A8)

where �(a; u) is the incomplete gamma function de�ned by

�(a; u) =

Z
1

u
e�t ta�1 dt (A9)

and the coe�cients A1; A2; and A3 are de�ned as

A1 = C1 +
C2

w

 
3

2
�

y2
?

4w

!
+
C3

w2

 
15

4
�

5y2
?

4w
+

y4
?

16w2

!
(A10)

A2 = �
C2

4w2 +
C3

w3

 
�

5

4
+

y2
?

8w

!
(A11)
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and

A3 =
C3

16w4
(A12)

The energy variation of Im �
(�)
R

is through the two-body parameters � and B that are isospin
averaged and evaluated at the energy w � �B in equation (43).

The coupling between the projectile and target can be evaluated from equation (A8) by
replacing (AT � 1) with APAT , letting yz ! �1, using two-body parameters appropriate for
the beam energy, and rede�ning w as

w =
R2
T

4
+
R2
P

4
+
B

2
(A13)

where we assume a light projectile when a Gaussian form factor is su�cient.
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Figure 1. Diagonal part of �rst-order response function versus energy loss for 4He with � = 0.

All dimensions are in fm�1.
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Figure 2. Diagonal part of �rst-order response function versus energy loss for 12C with � = 0.

All dimensions are in fm�1.
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Figure 3. Diagonal part of �rst-order response function versus energy loss for 27Al with � = 0.

All dimensions are in fm�1.
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Figure 12. Calculations of inclusive p scattering for 6Li at 800 MeV compared with data of

reference 19. p+ 6Li! p+ X at 800 MeV.
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Figure 13. Calculations of inclusive p scattering for 12C at 800 MeV compared with data of

reference 19. p+ 12C! p+X at 800 MeV.
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Figure 14. Calculations of inclusive p scattering for 27Al at 800 MeV compared with data of

reference 19. p+ 27Al! p+ X at 800 MeV.
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Figure 15. Calculations of inclusive p scattering for 40Ca at 800 MeV compared with data of

reference 19. p+ 40Ca! p+X at 800 MeV.
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Figure 16. Calculations of inclusive p scattering for 12C at 558 MeV compared with data of

reference 20. p + 12C! p+X at 558 MeV.
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Figure 17. Calculations of inclusive p scattering for 27Al at 558 MeV compared with data of

reference 20. p + 27Al! p+ X at 558 MeV.
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Figure 18. Calculations of inclusive p scattering for 12C at 800 MeV that include �nal state
interactions. Experimental data from reference 19. p+ 12C! p+X at 800 MeV.
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Figure 19. Calculations of inclusive p scattering for 27Al at 800 MeV that include �nal state
interactions. Experimental data from reference 19. p+ 12C! p+X at 800 MeV.
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